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Abstract

Let D be an irreducible Hermitian symmetric space of tube-type,S its Shilov boundary,G its
group of holomorphic diffeomorphisms. For a generic triple of points(σ1, σ2, σ3) ∈ S × S × S,
a characteristicG-invariant ι(σ1, σ2, σ3), called theMaslov indexwas introduced in [Transform.
Groups 6 (2001) 303]. ForD of classical type (i.e. for all cases except for the exceptional domain
associated to Albert’s algebra), the definition of the Maslov index is extended to all triples, by using
a holomorphic embedding ofD into a Siegel disc, which corresponds to an embedding ofS into a
Lagrangian manifold. WhenD is the Lie ball, the extension of the definition is obtained through a
realization ofS in the Lagrangian manifold of a spinor space.
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1. Introduction

In [4] the present author in collaboration with Ørsted introduced a generalization of
the Maslov index1 for triples of points in the Shilov boundaryS of a bounded symmetric
domain of tube-typeD. However, the Maslov index is defined only for generic triples
(σ1, σ2, σ3) ∈ S3, those such that any two elements of the triple satisfy a condition called
transversality.

E-mail address:clerc@iecn.u-nancy.fr (J.-L. Clerc).
1 The terminology is not quite standard. Some authors calltriple indexor signature cocylewhat we callMaslov

index(see[2] for a systematic treatment of the various notions related to the Maslov index).
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Here the definition of the Maslov index is extended to all triples, at least for classical
domains. Considering only irreducible domains, there are four infinite series of classical
domains, associated to classical (also called special) simple Euclidean Jordan algebras,
namely Sym(r,R), Herm(r,C), Herm(r,H) and theLorentz algebrasLp of rank 2 associ-
ated to the light cone inRp. There is only one simple Euclidean Jordan algebra which is not
classical, it is the so-called Albert’s algebra, the algebra of 3× 3 Hermitian matrices over
the octonionsO, which will not be considered here. Classical Euclidean Jordan algebrasJ

can be characterized abstractly by the existence of a non-trivial representation (in the sense
of Jordan algebras) ofJ .

The extended Maslov index has all the expected properties. It takes integral values, it
is invariant by the groupG of holomorphic diffeomorphisms of the domainD (G may
be thought of as the group of conformal transformations of S in the sense of[1]), it is
skew-symmetric with respect to permutation of the indices and satisfies acocyle relation.

In Section 2, the basic facts about the classical Maslov index are recalled. The domain
D is theSiegel discand its Shilov boundary is realized as theLagrangian manifold, and
connection is made, for this example, with the presentation of the generalized Maslov index
in [4] (see also[13] for earlier work in this direction). Kashiwara’s definition of the Maslov
index, valid for any triple of Lagrangians is recalled. This section is meant both as a model
and as a preparation for the rest of the paper.

In Section 3, the definition of the generalized Maslov index for mutually transverse
triples in the Shilov boundary of a (general) tube-type domainD is presented following[4].
The definition of the Maslov index is extended by using an arbitrary representation of the
associated Euclidean Jordan algebra and shown to be independent of the representation used.

The three remaining classical series (the first one has been treated inSection 2) are treated
in the next few sections. A specific realization of the domainD is used and the corresponding
realization of the Shilov boundaryS is described. For the algebra Herm(r,C) (Section 4)
and for the algebra Herm(r,H) (Section 5), the extension of the definition of the Maslov
index is obtained by using a standard representation of the Jordan algebra. This allows us
to give a definition of the Maslov indexà la Kashiwara, in fact very close to the real case.

Sections 6–8deal with the Lorentz algebraLp. This is the most delicate part of the paper.
Classical realizations of the associated domain are presented inSection 6(one is theLie
ball realization), together with a description of the Shilov boundaryS. The open orbits
of the action ofG = SO0(p,2) on S × S × S are characterized. Although elementary,
these geometrical results seem to be new. The representations ofLp are related to theory
of Clifford modules (see[3]), and hence to spinor spaces. InSection 7, we introduce a new
realization of the Shilov boundaryS as a special orbit ofG (or rather the spin group) in the
Lagrangian manifold of the spinor space corresponding to the signature(p,2). In Section 8,
a concrete expression of the extended Maslov index is obtained also in this case.

2. The Siegel disc, the Lagrangian manifold and Kashiwara’s Maslov index

Let (E,A) be a real symplectic vector space of dimension 2r. Let

g = sp(E) = {X ∈ End(E),A(Xv, v′)+ A(v,Xv′) = 0}
be the Lie algebra of the symplectic groupG = Sp(E).
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ChooseJ ∈ g such thatJ2 = −Id and such that the bilinear formB(v, v′) = A(v, Jv′)
(which is automatically symmetric) is positive-definite. This can be done by using a symplec-
tic basis ofE (see[14] for details). Associated to the choice ofJ is a Cartan decomposition of
g. In fact denote by Sym(B) (resp. Skew(B)) the space of symmetric (resp. skew-symmetric)
endomorphisms ofE with respect toB. Then let

t = g ∩ Skew(B) = {X ∈ g | JX = XJ}
and

p = g ∩ Symm(B) = {X ∈ g | JX = −XJ}.
Theng = t ⊕ p is a Cartan decomposition ofg. Moreover, the elementH0 = (1/2)J is in
the center oft, and forX ∈ p

(adH0)
2 = 1

2adH0(JX− XJ) = 1
4(J(JX− XJ)− (JX− XJ)J) = −X

so that adH0 defines a complex structure onp. The (non-compact) Riemannian symmetric
pair (g, t) is of Hermitian type.

Let E be the complexification ofE, extendJ as a complex linear map ofE, and consider

V
0
+ = {v ∈ E | Jv = iv}, V

0
− = {v ∈ E | Jv = −iv}.

The spacesV0+ andV 0− are totally isotropic for (the complexification of)A (or B) and the
restriction ofA (orB) to V0+ × V 0− induces a non-degenerate duality.

LetgC be the complexified Lie algebra ofg (viewed as a complex subalgebra of End(E)),
and define similarlytC andpC. Let

p± = {X ∈ pC | ad(H0)X = ±iX}.
LetX ∈ p+. ThenJX− XJ = 2iX. So if v ∈ V0+, then

JXv = (XJ+ 2iX)v = 3iXv

so thatXv = 0. If v ∈ V0−, then

JXv = (XJ+ 2iX)v = iXv

so thatX mapsV0− to V0+. Moreover, forv,w ∈ V0−:

B(Xv,w) = A(Xv, Jw) = −A(v,XJw) = A(v, JXw) = B(v,Xw)
so that the induced map fromV0− to V0+ is symmetric with respect to the duality. The
converse statement is easily verified, so thatp+ can be identified with the space (denoted
by Sym(V0−,V0+)) of homomorphisms ofV0− into V0+ which are symmetric with respect to
the duality induced byB.

The formula

h(v, v′) = iA(v̄, v′)
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defines a Hermitian form2 on E. It is easily verified thatE = V0+ ⊕ V0− is an orthogonal
decomposition w.r.t.h, and thath | V0+ × V0+ (resp.h | V0− × V0−) is positive-definite
(resp. negative-definite). It shows in particular thath has signature(r, r).

Let us consider the setD of all r-dimensional complex linear spacesV− of E such that

A|V−×V− = 0, h|V−×V− � 0. (1)

The setD is a submanifold of the Grassmannian ofr-dimensional subspaces inE, and hence
a complex manifold. After complexifying its action,G acts onD. This action turns out to
be transitive onD, andD is the Hermitian symmetric space associated to the simple Lie
groupG.

The spaceD can be realized as a bounded symmetric domain as follows. IfV− is any
subspace satisfying(1), then the restriction toV− of the orthogonal projection onV0− is an
isomorphism (asV− ∩ V0+ = {0}), and hence there exists a linear operatorz from V0− to
V0+ such that

V− = V
z
− = {v− + zv− | v− ∈ V

0
−}. (2)

Moreover, the mapz is symmetric for the duality onV0− ×V0+ induced byA, in other words
z belongs to Sym(V0−,V0+). Finally, for z ∈ Sym(V0−,V0+), the spaceVz− defined by(2)
satisfies the conditions(1) if and only if

∀ v− ∈ V
0
− h(zv−, zv−) < −h(v−, v−)

so if and only ifz is a contraction from(V0−,−h) to (V0+, h).
For a more explicit realization, choose an orthonormal basis(e1, e2, . . . , er) of V+ and

for 1 ≤ j ≤ r, let ej+r = ej. Then(er+1, . . . , e2r) is an orthogonal basis ofV0−.
Still denote byz the matrix of this operator with respect to these basis ofV0− andV0+.

The conditions onz which correspond to the conditions(1) onV− turn out to be

z ∈ Sym(r,C), 1 − zz̄� 0. (3)

ThusD is realized as a the unit ball (for the spectral norm) in Sym(C). In this realization
D is called theSiegel disc. The Shilov boundary ofD is

S = {σ ∈ Sym(r,C) | σ̄ = σ−1}
(see[8]).

Viewing σ as an element in Sym(V0−,V0+), this means thatσ is a unitary map from
(V0−,−h) to (V0+, h). Going back to the geometric realization, the Shilov boundary ofD
consists in ther-dimensional complex vector spaces of the form

W
σ = {v− + σv−|v− ∈ V

0
−} (4)

for σ ∈ S. Such a spaceW satisfies the conditions:

A|W×W = 0, h|W×W = 0 (5)

2 Hermitian forms are assumed to beC-linear in the second variable.
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and conversely, anyr-dimensional subspaceW of E which satisfies(5) can be written as
Wσ for someσ ∈ S. The conditions(5) imply that W̄ is A-orthogonal toW, and hence
W̄ = W. SoW is the complexification of the (real) Lagrangian subspaceW = W∩E ofE.
Conversely, ifW is a Lagrangian subspace ofE, then its complexificationW satisfies(5).
This shows that the Shilov boundaryS of D can be identified with the (real)Lagrangian
manifoldof all Lagrangian spaces inE.

A more explicit expression of the identificationσ �→ Wσ = Wσ ∩ E will be needed, at
least whenσ is diagonal. For 1≤ j ≤ r, set

fj = ej + ej+r√
2

, fj+r = −ej + ej+r
i
√

2
.

Then{fj}1≤j≤2r is a symplectic basis ofW . For 1 ≤ j ≤ r, let λj = eiθj be a complex
number of modulus 1, and consider

σ =


λ1 0 · · · 0

0 λ2 · · · 0
...

. . .
...

0 0 · · · λr

 .

The associated LagrangianWσ is the subspace:

Wσ =
⊕

1≤j≤r
R(λ

1/2
j ej + λ−1/2

j ej+r) =
⊕

1≤j≤r
R

(
cos

(
θj

2

)
fj + sin

(
θj

2

)
fj+r

)
.

(6)

Transversality of two Lagrangian spacesW1,W2 is denoted by

W1�W2 ⇔ W1 ∩W2 = {0}.
Forσ, τ ∈ S, letWσ = Wσ∩E andWτ = Wτ∩E. Then the relationWσ�Wτ is equivalent
to σ − τ being injective or equivalently to Det(σ − τ) �= 0. This condition is denoted by
σ�τ. The symplectic groupG acts on pairs of transverse Lagrangian spaces, and this action
is transitive.

Now consider three mutually transverse Lagrangian spaces(W1,W2,W3) inE. There ex-
ists anormal formfor the triple. More precisely, there exists a symplectic basis{f1, f2, . . . ,

fr, fr+1, . . . , f2r} of E such that

W1 = Rf1 ⊕ Rf2 ⊕ · · · ⊕ Rfr, W2 = Rfr+1 ⊕ Rfr+2 ⊕ · · · ⊕ Rf2r,

W3 = R(f1 + fr+1)⊕ · · · ⊕ R(fk + fr+k)
⊕ R(fk+1 − fr+k+1)⊕ · · · ⊕ R(fr − f2r), (7)

wherek is an integer, 0≤ k ≤ r (see[11, Corollary 1.5.7]). Denote byS3
� the set of triples

of mutually transverse Lagrangian spaces inE. The existence of a normal form implies that
there are exactlyr + 1 orbits inS3

� under the action ofG.
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Kashiwara (see[11, Section 1.5]) proposed a definition of the Maslov index for any
triple of Lagrangian spaces (not necessarily mutually transverse). LetW1,W2,W3 be three
Lagrangian spaces inE. OnW1 ×W2 ×W3, consider the quadratic formQ defined by

Q(v1, v2, v3) = A(v1, v2)+ A(v2, v3)+ A(v3, v1)

and defines the Maslov index by

ι(W1,W2,W3) = sgn(Q),

where sgn stands for the signature of the quadratic form. It is by construction invariant by
G, hence constant on the orbits. For a triple inS3

�, the Maslov index is shown to be equal
to r − 2k, wherek is the integer which appears in the normal form of the three mutually
transverse Lagrangian spaces (see[11, Corollary 1.5.7]).

A slightly more general formula for the Maslov index (covering some non-mutually
transverse cases) will be needed.

Lemma 2.1. Let{f1, f2, . . . , fr, fr+1, . . . , f2r} be a symplectic basis of E. For1 ≤ j ≤ r,
let θj ∈ R/2πZ and consider the three following Lagrangian spaces

W1 = Rf1 ⊕ Rf2 ⊕ · · · ⊕ Rfr, W2 = Rfr+1 ⊕ Rfr+2 ⊕ · · · ⊕ Rf2r,

W3 =
⊕

1≤j≤r
R

(
cos

(
θj

2

)
fj + sin

(
θj

2

)
fj+r

)
.

Then

ι(W1,W2,W3) = "{j| sinθj < 0} − "{j| sinθj > 0}. (8)

AsW1 andW2 are transverse, the proof of(8) is a consequence of[11, Lemma 1.5.4].
These results can be transferred toS. For(σ1, σ2, σ3) ∈ S3, set

ι(σ1, σ2, σ3) = ι(Wσ1,Wσ2,Wσ3).

Lemma 2.2. For 1 ≤ j ≤ r, let θj ∈ R/2πZ. Let

σ =


eiθ1 0 · · · 0

0 eiθ2 · · · 0
...

. . .
...

0 0 · · · eiθr

 .
Then

ι(Idr,−Idr, σ) = "{j| sinθj < 0} − "{j| sinθj > 0}.

The Maslov index is skew-symmetric with respect to permutations of the three arguments,
namely:

ι(σπ(1), σπ(2), σπ(3)) = ε(π)ι(σ1, σ2, σ3) (9)
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for any permutationπ of the set{1,2,3} of signatureε(π) = ±1. The Maslov index satisfies
the cocycle relation:

ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4)+ ι(σ2, σ3, σ4)+ ι(σ3, σ1, σ4) (10)

for any four elementsσ1, σ2, σ3, σ4 of S.

3. The Maslov index on the Shilov boundary of a classical bounded
domain of tube-type

The present author in a joint work with Ørsted (see[4,5]) proposed a generalization of
the Maslov index on the Shilov boundary of any bounded domain of tube-type.

Recall there are two main equivalent approaches to Hermitian symmetric domains. One
uses Lie theory, the other uses the theory of Jordan triples. Both of them will be considered.
Main references are[7,8,10,12,14].

Let g be a simple real Lie algebra of the non-compact type. Letg = t ⊕ p be a Cartan
decomposition. Then the corresponding symmetric space is of Hermitian type if and only if
there exists an elementH0 (then unique up to a sign) in the center oft, such that(adH0|p)2 =
−Idp. Hence adH0 induces a complex structure onp. LetgC be the complexified Lie algebra
of g and denote byσ the conjugation ofgC with respect to the compact real formg = t⊕ ip.
Let pC be the complexification ofp, and let

p± = {X ∈ pC|adH0(X) = ±iX}.
The spacep+ is a commutative subalgebra ofgC and has a structure ofpositive-definite
Hermitian Jordan triple system. The triple product is given by

{x, y, z} = 1
2[[x, σy], z].

Observe that it isC-linear inx andz, andC-conjugate linear iny.
Forx, y ∈ p+, let x�y be the endomorphism ofp+ given by

(x�y)z = {x, y, z}.
Then the Hermitian symmetric space is realized à la Harish Chandra as

D = {z ∈ p+| ‖z�z‖op < 1},
wherep+ is equipped with a certain inner product constructed from the Killing form ofg,
and‖ ‖op is the operator norm with respect to this inner product.

The Shilov boundaryS of the domainD is

S = {σ ∈ p+|{σ, σ, σ} = σ}.
The domains of tube-type correspond to the case wherep+ has a structure ofpositive-definite
Hermitian Jordan algebra. This occurs if and only if there exists an elemente in p+ such
that

{e, e, z} = z ∀ z ∈ p+
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or in Lie terms

[e, σ(e)] = 2iH0.

The real subspaceJ = {z ∈ p+|{e, z, e} = z} is then a Euclidean Jordan algebra for the
Jordan multiplication

x · y = {x, e, y}
with e as unit element.

The domainD is realized à laHarish Chandraas the unit ball (in the complexificationJ
of J) for a certain norm, called the spectral norm.

The process can be reversed, by using theKoecher–Kantor–Tits constructionto recover
the Lie algebrag (see[14]). For tube-type domains, a more global approach is presented in
[8], which notation and results are freely used in the sequel.

Let J be a simple Euclidean Jordan algebra. Lete be the unit inJ ,Ω the (open) cone of
squares inJ , and det the determinant polynomial (also called norm). LetJ be the complex-
ification ofJ and denote by| |op thespectral normonJ. The corresponding unit ball

D = DE = {z ∈ J| |z|op < 1}
is a bounded symmetric domain of tube-type. It is holomorphically equivalent to the tube
domainT = J + iΩ ⊂ J (this is whyD is said to be of tube-type). LetG = Hol(D)0 be
the neutral component of the group of holomorphic diffeomorphisms ofD.

The Shilov boundaryS of D is described as

S = {σ ∈ J|z̄ = z−1}.
Two elementsσ, τ of S are said to betransverse(see[4]) if and only if

σ�τdef⇔det(σ − τ) �= 0.

The groupG preserves the tranversality, and acts transitively on

S2
� = {(σ, τ) ∈ S × S|σ�τ}.

Let

S3
� = {(σ1, σ2, σ3) ∈ S × S × S|σj�σk for j �= k}.

There are a finite number of orbits underG in S3
� (exactlyr + 1 wherer is the rank of the

Jordan algebraJ and also the rank ofD as a Riemannian symmetric space). Representa-
tives of the orbits can be described. To each triple of mutually transverse elements ofS is
associated itsMaslov indexι(σ1, σ2, σ3). The Maslov index is invariant byG, satisfies the
skew-symmetry property(9) and the cocycle relation(10). The Maslov index characterizes
the orbits ofG in S3

� in the sense that two triples are conjugate underG if and only if they
have the same Maslov index.

The question now to be addressed is the existence of an extension of the Maslov index
to all triples, including triples which do not satisfy the tranversality condition. WhenJ =
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Sym(r,R), the situation was studied in the first section, and so there is indeed an extension,
given by Kashiwara’s formula.

For a classical Euclidean Jordan algebra the question can be answered by using a repre-
sentation of the Jordan algebra.

Let (F, (·|·)) be a Euclidean vector space, of dimensionN. A representation ofJ in F is a
Jordan algebra homomorphismΦ : J → Sym(F). For anyx ∈ J ,Φ(x) is an endomorphism
of F such that for allx, y ∈ J , λ ∈ R, ξ, η ∈ F :

(i) Φ(x+ λy) = Φ(x)+ λΦ(y).
(ii) Φ(xy) = 1

2(Φ(x)Φ(y)+Φ(y)Φ(x)),Φ(e) = IdE.
(iii) (Φ(x)ξ|η) = (ξ|Φ(x)η).
Two consequences of the axioms are

Φ(P(x)y) = Φ(x)φ(y)Φ(x) for all x, y ∈ J (11)

(P is thequadratic representationof J), and

Φ(x)� 0 for x ∈ Ω. (12)

If e = ∑r
j=1 cj is a Peirce decomposition of the unit ofJ , then

IdF =
r∑
j=1

Φ(cj)

is an orthogonal decomposition of the identity inF . For anyj,1 ≤ j ≤ r, Φ(cj) is an
orthogonal projection, and its rank is easily seen to be independent ofj (see, e.g.[3]), so
thatd =: (N/r) is an integer.

Let F be the complexification ofF and still denote byΦ the complex extension ofΦ. As
Φ maps idempotents ofJ to idempotents of Sym(F), one verifies that for anyz ∈ J:

|Φ(z)|op = |z|op

so thatΦ mapsD into the Siegel discDF = {z ∈ Sym(F)|IdF − zz̄� 0}.
Moreover,Φ sends the Shilov boundaryS ofD into the Shilov boundarySF of the Siegel

disc, preserves transversality and satisfies the following relation (proved in even greater
generality in[4, Theorem 6.3]):

∀(σ1, σ2, σ3) ∈ S3
� ι(Φ(σ1),Φ(σ2),Φ(σ3)) = N

r
ι(σ1, σ2, σ3). (13)

Now the left-hand side of the formula is defined (by Kashiwara’s formula) for any triple.
Take as a definition of the extended Maslov index the formula:

ι(σ1, σ2, σ3) = r

N
ι(Φ(σ1),Φ(σ2),Φ(σ3)). (14)

Theorem 3.1. The extended Maslov index as defined by(14) is independent of the repre-
sentationΦ used for its definition. It takes integral values between−r and r, is invariant by
G, skew-symmetric with respect to the permutations of the three indices, and satisfies the
cocyle relation(10).
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The proof is divided into several steps.

Step 1. Let us first prove the invariance byG. From the representationΦ, it is possible to
construct a Lie algebra homomorphism ofg = Lie(G) into the Lie algebrasp(E × E), to
which it corresponds a (local) homomorphism ofG into the symplectic group, which could
be used to prove the invariance. There is a more global approach, for which no reference
seems to be available. Hence a couple of lemmas are needed.

Denote by Str(J ) thestructure groupof J . Define

H = {(l, g) ∈ GL(J )× GL(F) |Φ(lx) = gΦ(x)g′}.
ClearlyH is a closed subgroup of GL(J )× GL(F).

Lemma 3.2. Let (l, g) ∈ H . Thenl ∈ Str(J ).

Proof. Let x be inJ . For ally ∈ J :

Φ(P(lx)y) = φ(lx)Φ(y)Φ(lx) = gΦ(x)g′Φ(y)gΦ(x)g′.
Assume further thatx is invertible. This last identity can be rewritten as

Φ(P(x−1)l−1P(lx)y) = g′Φ(y)g.
But asJ is assumed to be simple,Φ is injective, and henceP(x−1)l−1P(lx) is independent
of x, so there exists a certain elementh ∈ GL(J ) such that

P(lx) = lP(x)h

for any invertible elementx, and hence by continuity for anyx ∈ J . From [8, Lemma
VIII.2.3] , this implies thath = l′ andl ∈ Str(J ). �

Lemma 3.3. Let l ∈ Str(J )0. Then there existsg ∈ GL(F) such that(h, g) belongs to H.

Let x ∈ J be invertible. ThenP(x) ∈ Str(J ). Formula(11) shows that(P(x),Φ(x))
belongs toH . But the subgroup of Str(J ) generated by the{P(x), x ∈ J} (called theinner
structure groupin [15]) contains the neutral component of the group Str(J ). Hence the
projection on the first factor, fromH into Str(J ), contains Str(J )0 in its image.

Recall thatTΩ = J + iΩ is holomorphically equivalent to the domainD. If y ∈ Ω, then
Φ(y) is positive-definite, so thatΦ mapsTΩ into the Siegel half-space

TF = {s+ it|s, t ∈ Sym(F), t � 0}.
The group Hol(T )0 (=connected component of the identity in the group of all holomorphic
diffeomorphisms ofT ) is isomorphic toG, but is easier to handle (a family of generators
is easy to describe). In fact, let us consider the group generated by

• the translationstv : z �→ z+ v, for v ∈ J ;
• the transformationsz �→ lz, wherel ∈ Str(J )0;
• the inversionι : z �→ −z−1.
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All these transformations belong to Hol(TΩ)and the group they generated contains Hol(TΩ)0

(see[8, Theorem X.5.6]).
Let

C = {(h, g) ∈ Hol(TΩ)× Hol(TF )|Φ(h(z)) = g(Φ(z))}.
ClearlyC is a closed subgroup of Hol(TΩ)× Hol(TF ).

Lemma 3.4. Leth ∈ Hol(TΩ)0. Then there existsg ∈ Hol(TF ) such that(h, g) ∈ C.

Proof. Forh = tv for somev ∈ J , one hasΦ(z+v) = Φ(z)+Φ(v), and hence(tv, tΦ(v)) ∈
C. For l ∈ Str(J )0, there exists byLemma 3.2, g ∈ GL(F) such that(l, g) ∈ H . By
complexification:

Φ(lz) = gΦ(z)g′ ∀ z ∈ J.

Hence(l, g) ∈ C. Finally, asΦ is a homomorphism of Jordan algebras,Φ(−z−1) =
−Φ(z)−1, and hence(ι, ιSym(F)) ∈ C. As the group generated by all these transformations
contains Hol(TΩ)0, the lemma follows.

Use a Cayley transform to conclude that for any elementl ∈ G = Hol(D)0, there exists
an elementg ∈ Hol(DF ) such thatΦ(l(z)) = g(Φ(z)) for all z ∈ D. Recalling that the
group Hol(DF ) is isomorphic to the symplectic group ofF ×F and that the mapσ �→ Wσ

is equivariant with respect to this isomorphism, this last result implies that the extended
Maslov index is invariant byG. �

Step 2. The independence from the representationΦwill be a consequence of a computation
of the extended Maslov index for triples in which only one couple is not assumed to be
transverse.

Fix a Peirce decomposition of the unite = ∑r
j=1 cj. Forp, q such thatp ≥ 0, q ≥ 0,

p+ q ≤ r, let

εp,q = −i

 p∑
j=1

cj

+ i

 p+q∑
j=p+1

cj

−
r∑

j=p+q+1

cj.

Observe thatεp,q belongs toS andεp,q�e.

Lemma 3.5. Let (σ1, σ2, σ3) ∈ S3, and assume thatσ1�σ2 andσ1�σ3. Then there exists
two integersp, q with p ≥ 0, q ≥ 0,p+ q ≤ r and an elementg ∈ G such that

(σ1, σ2, σ3) = (g(e), g(−e), g(εp,q)).

The proof is completely similar to the proof of Theorem 4.3 in[4]. AsG acts transitively
on S2

�, it is possible to assume thatσ1 = e, σ2 = −e. As σ3 is also transverse toe, the
Cayley transformc(z) = i(e+ z)(e− z)−1 is well defined atσ3. Setξ3 = c(σ3) ∈ J . The
image of the stabilizer of(e,−e) under the Cayley transform isL = Str(J )0. Now any
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element ofJ is conjugate underL to

p∑
j=1

cj −
p+q∑
j=p+1

cj

for some integersp, q with p ≥ 0, q ≥ 0,p+ q ≤ r. Apply the inverse Cayley transform
to get the lemma.

The image throughΦ of the triple(σ1, σ2, σ3) is conjugate under the symplectic group
to the triple(IdF ,−IdF ,Ep,q) where

Ep,q = −i

 p∑
j=1

Φ(cj)

+ i

 p+q∑
j=p+1

Φ(cj)

−
r∑

j=p+q+1

Φ(cj).

All three maps(IdF ,−IdF ,Ep,q) are diagonal in the basis{fj,1 ≤ j ≤ N}. Lemma 3.2
can be used to compute the corresponding Maslov index, namely:

ι(W Id,W−Id,WEp,q ) = (p− q)d.
Hence the definition of the extended Maslov index gives

ι(σ1, σ2, σ3) = ι(e,−e, εp,q) = (p− q).
So for these triples, the value of the extended Maslov index is an integer and does not depend
on the representation used for the definition.

Now let(σ1, σ2, σ3) ∈ S3 be an arbitrary triple. Then choose an elementσ4 ∈ S such that
σ4 is transverse to allσ1, σ2, σ3. Then, thanks to the cocycle relation(10) for the classical
Maslov index, one has

ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4)+ ι(σ2, σ3, σ4)+ ι(σ3, σ1, σ4).

As σ4 is transverse to the two other elements of any triple in the right-hand side of the
formula, these three terms are of the type already considered. Hence, the left-hand side is
an integer and does not depend on the particular representation considered.

Step 3. The extended Maslov is skew-symmetric with respect to permutations of the indices
{1,2,3}, and satisfies the cocycle relation, as these properties are true for the classical
Maslov index. This completes the proof ofTheorem 4.1.

4. The unitary case

Let V a vector space overC of dimension 2r, and leth be a skew-Hermitian3 form h of
signature(r, r). Denote byG = U(V, h) � U(r, r) the subgroup of linear transformations

3 The use of a skew-Hermitian form rather than a Hermitian form is to stress the analogy with the real and
quaternionic case.
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preserving the formh. LetV 0+ andV 0− be subspaces such that

V = V 0
+ ⊕ V 0

−, V 0
+ ⊥ V 0

−, ih|V 0
+ � 0, ih|V 0

− � 0.

Denote byp+ (resp.p−) the orthogonal projection onV 0+ (resp.V 0−).
Let us consider the setD of all r-dimensional subspacesV− of V such that ih|V− � 0. It

is an open set in the Grassmannian ofr-dimensional subspaces ofV , on whichG acts and
D is a realization of its associated Hermitian symmetric space (see[14, Appendix]).

Let V− ∈ D. As V 0+ ∩ V− = {0}, the restriction ofp− to V− is a linear bijection ofV−
onV 0−, and hence there exists a linear mapz : V 0− → V 0+ such that

V− = Vz− = {ξ + zξ|ξ ∈ V 0
−}. (15)

Moreover, the spaceVz− defined by(15)belongs toD if and only if z satisfies

ih(zξ, zξ) < −ih(ξ, ξ)

for all ξ ∈ V 0−, which means that

|z|op < 1

as a map from(V 0−,−ih|V 0−
) into (V 0+, ih|V 0+

). This shows that, by taking appropriate basis

in V 0− andV 0+, the Hermitian symmetric space is realized as the unit ball in Mat(r,C).
Consider the Euclidean Jordan algebraJ = Herm(r,C) with the Jordan productx · y =

(1/2)(xy + yx) and inner product Re tr(xy). Its complexification can be realized asJ =
Mat(r,C), the conjugation with respect to the real formJ beingx �→ x∗ = (x̄)t . The
spectral norm coincides with the operator norm and so the associated Hermitian symmetric
space is the unit ball in Mat(r,C).

In this picture, it is easy to determine the Shilov boundary ofD. It is the space of unitary
matrices

S = {σ ∈ Mat(r,C)|σ̄ = σ−1} � U(r).
Transferring back to the first picture ofD, the Shilov boundary appears as the space of
r-dimensional subspacesW = Wσ in V defined by

Wσ = {ξ + σξ|ξ ∈ V 0
−},

whereσ : V 0− → V 0+ is an isometry for the inner products−ih|V 0−
and ih|V 0+

. The space
Wσ is easily seen to be totally isotropic forh, and conversely, any maximal totally isotropic
subspace ofV is of the formWσ for some unitaryσ : V 0− → V 0+. Hence the Shilov boundary
S of D can be identified with the manifold of (complex) Lagrangians inV .

The Jordan algebra Herm(r,C) has a natural representation. Let us considerF = (Cr)R
the real vector space of dimension 2r underlying the complex vector spaceCr, and consider
the Euclidean inner product defined by

(ξ, η) = Re〈ξ, η〉,
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where〈ξ, η〉 is the standard inner product onCr. Then, forx ∈ J andξ ∈ F let

Φ(x)ξ = xξ.
This defines a Euclidean representation, and the indexd equals 2r/r = 2. As explained in
Section 3, this representation extended to the complexificationJ can be used to extend the
definition of the Maslov index.

In turn, the spaceE = F × F can be viewed as the real vector subspace underlying the
2r-dimensional complex spaceV , the symplectic form being Reh (this where the choice ofh
as a skew-Hermitian rather than Hermitian form is justified) and the representation associates
to a complex LagrangianW in V the real Lagrangian subspaceWR inE underlyingW . This
leads to a definition of the extended Maslov index à la Kashiwara for triples of complex
Lagrangians. For three complex LagrangiansW1,W2,W3 in V , defineQ on (W1 ×W2 ×
W3)× (W1 ×W2 ×W3) by

Q((ξ1, ξ2, ξ3), (η1, η2, η3))= (h(ξ1, η2)− h(ξ2, η1)+ h(ξ2, η3)− h(ξ3, η2)

+h(ξ3, η1)− h(ξ1, η3)). (16)

As h is assumed to be skew-Hermitian, this defines an Hermitian form onW1 ×W2 ×W3.

Theorem 4.1. LetW1,W2,W3 be three complex Lagrangians in V. The extended Maslov
index is given by

ι(W1,W2,W3) = sgn(Q), (17)

wheresgnQ is the signature of the Hermitian form Q onW1 ×W2 ×W3 defined by(16).

Proof. The corresponding real quadratic form (on(W1 ×W2 ×W3)R) is given by

Q(ξ1, ξ2, ξ3) = 2 Reh(ξ1, ξ2)+ 2 Reh(ξ2, ξ3)+ 2 Reh(ξ3, ξ1).

The signature of this quadratic form is (Kashiwara’s definition of) the classical Maslov
index ι(W1R,W2R,W3R). But the signature sgnC of Q as a Hermitian form ishalf the
signature sgnR ofQ viewed as a real quadratic from. Hence the extended Maslov index for
W1,W2,W3 as defined inSection 3is given by

ι(W1,W2,W3) = 1
2ι(W1R,W1R,W1R) = 1

2 sgnRQ = sgnC(Q). � (18)

5. The quaternionic case

Let H be the quaternion field, with its standard involution. Quaternions will be described
by two complex numbers:

q = a+ bi + cj + dk = z+ wj,

wherez = a + ib andw = c + id for a, b, c, d ∈ R. With this notation, notice that for
z,w ∈ C, jz = z̄j andq̄ = z̄− wj.
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Let V be a (right) vector space overH of dimensionp, and leth be a non-degenerate
skew-HermitianH-valued form onV , i.e.h : V × V → H satisfies

h(v, v′q) = h(v, v′)q, h(vq, v′) = q̄h(v, v′), h(v′, v) = −h(v, v′)
for all q ∈ H andv, v′ ∈ V . The main references (and most of the notation) are from[9] (or
occasionally from[14]). Now introduce theC-valued formsA andB defined onV (viewed
as a complex vector space of dimension 2p)

h(v, v′) = A(v, v′)+ jB(v, v′). (19)

The formB is C-bilinear and symmetric, whereasA is skew-Hermitian. Moreover, the
formsA andB are related by

A(v, v′) = −B(vj, v′). (20)

As a consequence:

A(vj, v′j) = A(v, v′)
for v, v′ ∈ V . If V+ is a (complex) subspace ofV such that iA|V+×V+ � 0, then letting
V− = (V+)j one has iA|V−×V− � 0, so that the Hermitian form iA is of signature(p, p).

Let G = U(V, h) be the group ofH-linear transformations which preserve the form
h. It can also be looked at as the group ofC-linear transformationsg which preserve the
symmetric formB and such thatg(vj) = (gv)j for all v ∈ V . This last group is usually
denoted byO∗(2p,C).

Let us consider thep-dimensional subspacesV− of V such that

B|V−×V− = 0, iA|V−×V− � 0. (21)

These conditions are stable by the action ofG, and the spaceD of such subspaces (viewed as
a subspace of the GrassmannianG(r,2r)) turns out to be a Hermitian symmetric space, with
G as the neutral component of its group of biholomorphic transforms. To make connections
with matrix realizations ofD, fix a base pointV 0− in D, and observe thatV 0+ = V 0−j is a
complementary subspace, such thatB|V 0+×V 0+

= 0 and iA|V 0+×V 0+
� 0. If V− is any element

of D, then the projection onV 0− parallel toV 0+ is a (C-linear) isomorphism. Hence there
exists a linear mapz : V 0− → V 0+ such that

V− = Vz− = {ξ + zξ, ξ ∈ V 0
−}.

Moreover, the spaceVz− thus defined satisfies the conditions(20)are satisfied if and only if
for appropriate choices of dual basis inV 0− andV 0+

zt = −z, I − z∗z� 0

(see[14, Appendix]). SoD is realized as the unit ball in the space of complexp × p
skew-symmetric matrices. The domainD is of tube-type if and only ifp is even, say
p = 2r, which will be assumed for the rest of this section.

Consider the Euclidean Jordan algebraJ = Herm(r,H) with the Jordan productx · y =
(1/2)(xy+ yx). Its complexification can be described as Skew(2r,C) with a certain Jordan
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product whose exact formulation is not necessary for our purpose. The associated Hermitian
symmetric domain is the unit ball in Skew(2r,C) (see[8] for details).

In this picture the determination of the Shilov boundaryS of D is easy. It is given by the
conditions:

z = −zt, I − z∗z = 0.

Going back to the previous realization ofD, a 2r-dimensional complex subspaceW belongs
to the Shilov boundary ofD if and only if

W ∈ S ⇔ B|W×W = 0, iA|W×W = 0.

SoW is totally isotropic for the full formh = A+Bj. Moreover, the spaceWj isA-orthogonal
to W and hence contained inW , so thatW is a quaternionic subspace ofV . The Shilov
boundaryΣ is realized as the space of allquaternionic Lagrangian subspaces(i.e. maxi-
mally h-isotropic subspaces) ofV .

The Jordan algebraJ = Herm(r,H) has a natural representation. Let us considerF =
(Hr)R the real vector space of dimension 4r underlying the quaternionic vector spaceHr,
and consider the Euclidean inner product defined by

(ξ, η) = Re〈ξ, η〉,
where〈ξ, η〉 denotes the standard quaternionic inner product onHr. Then, forx ∈ J and
ξ ∈ F , let

φ(x)ξ = xξ.
This defines a Euclidean representation, and the indexd equals 4r/r = 4. As before,
extend this representation to the complexificationJ and then use its restriction to the Shilov
boundary in order to define the extended Maslov index.

The spaceF ×F is the real vector space underlying the quaternionic vector spaceV, and
ω = Reh is the corresponding (real) symplectic form onF × F . Hence to a quaternionic
Lagrangian spaceW in V is associated through the representationΦ the real underlying
spaceWR, which is a Lagrangian forω. Conversely, notice that if a Lagrangian ofVR �
F × F for ω is indeed the real vector space underlying a quaternionic spaceW , thenW is
a Lagrangian subspace ofV for h, as a consequence of formulae(19) and (20).

As a result, a Kashiwara’s type definition of the Maslov index is available. For three
quaternionic LagrangiansW1,W2,W3 in V defineQ onW1 ×W2 ×W3 by

Q((ξ1, ξ2, ξ3), (η1, η2, η3))= (h(ξ1, η2)− h(ξ2, η1)+ h(ξ2, η3)− h(ξ3, η2)

+h(ξ3, η1)− h(ξ1, η3)). (22)

This defines a quaternionic Hermitian form onW1 ×W2 ×W3.

Theorem 5.1. LetW1,W2,W3 be three complex Lagrangians in V. The extended Maslov
index is given by

ι(W1,W2,W3) = sgn(Q), (23)
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wheresgnQ is the signature of the quaternionic Hermitian form Q onW1 × W2 × W3
defined by(22).

The proof is almost the same as for the complex case, except that the signature overH

of the Hermitian formQ is aquarterof the signature of the associated real quadratic form
on (W1 ×W2 ×W3)R. This is balanced by the fact that the indexd equals 4 in this case.

6. The domains of type IV: elementary approach

A domain of type IV corresponds to theLorentzianEuclidean Jordan algebra. Let
J = Lp = Rp = R ⊕ Rp−1 with the Jordan product

(x1, x2, . . . , xp)(y1, y2, . . . , yp) = (z1, z2, . . . , zp)
with

z1 = x1y1 + x2y2 + · · · + xpyp, zj = x1yj + y1xj (2 ≤ j ≤ p)
and use the standard inner product onRp. The unit ise = (1,0, . . . ,0) and the associated
cone is the future cone:

Ω = {(x1, x2, . . . , xp)|x2
1 − x2

2 − · · · − x2
p > 0, x1 > 0}.

In this section the classical geometric realization of the associated Hermitian symmetric
domainD is recalled and its Shilov boundaryS is determined. An elementary and explicit
description of the open orbits inS × S × S is given, as this does not seem to be available
in the literature.

Let V be a real vector space, with a non-degenerate quadratic formS onV of signature
(p,2), wherep ≥ 2. LetV = V ⊗R C be its complexification, extendS to V as a complex
bilinear symmetric form, still denoted byS, and on the other hand, letH be the Hermitian
form onV defined by

H(x, y) = S(x̄, y).
Consider the complex linesW in V which satisfy the following conditions:

S|W = 0, H|W � 0. (24)

Fix once for all a basis{e1, e2, . . . , ep+1, ep+2} such that

S(ej, ek) = 0 if j �= k, S(ej, ej) = 1 if 1 ≤ j ≤ p,
S(ej, ej) = −1 if j = p+ 1 or p+ 2.

A lineW = C

(∑p+2
j=1 zjej

)
satisfies the conditions(24) if and only if

z21 + · · · + z2p − z2p+1 − z2p+2 = 0,

|z1|2 + · · · + |zp|2 − |zp+1|2 − |zp+2|2 < 0. (25)
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These conditions imply|z2p+1+z2p+2| < |zp+1|2+|zp+2|2. Hencezp+1 �= 0,zp+2 �= 0, and

(zp+1/zp+2)
2 /∈ R+, so(zp+1/zp+2) /∈ R. HenceJ(zp+1/zp+2) > 0 orJ(zp+1/zp+2) < 0.

The spacẽD of all complex lines satisfying(24)has two connected components, and letD
be the component that corresponds to the condition:

J

(
zp+1

zp+2

)
> 0. (26)

LetW = C

(∑p+2
j=1 zjej

)
be inD. Condition(26) implies thatzp+1 + izp+2 �= 0. Hence

for 1 ≤ j ≤ p, set

tj = zj

zp+1 + izp+2
.

Then observe that

p∑
j=1

t2j =
z2p+1 + z2p+2

(zp+1 + izp+2)2
= zp+1 − izp+2

zp+1 + izp+2
.

Moreover, notice that

|zp+1|2 + |zp+2|2
|zp+1 + izp+2|2 = 1

2

(
1 +

∣∣∣∣ izp+1 + zp+2

zp+1 + izp+2

∣∣∣∣2
)
.

Hence the condition(25)now reads

p∑
j=1

|tj|2 < 1

2

1 +
∣∣∣∣∣∣
∑
j=1

t2j

∣∣∣∣∣∣
2
 , (27)

whereas the condition(26) amounts to
∣∣∣∑p

j=1 t
2
j

∣∣∣ < 1 (by Cayley transform from the

upper half-plane into the unit disc), which thanks to the condition(27) is equivalent to the
(seemingly) stronger condition:

p∑
j=1

|tj|2 < 1. (28)

Recall thatCp can be endowed with a structure of complex Jordan algebra with Jordan
product defined by

(t1, t2, . . . , tp)(s1, s2, . . . , sp) = (u1, u2, . . . , up),

whereu1 = t1s1 − t2s2 − · · · − tpsp and forj ≥ 2, uj = t1sj + tjs1. The real form

J = {(t1, it2, . . . , itp), tj ∈ R}
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is (isomorphic to) the Euclidean Jordan algebra of Lorentzian type of dimensionp. The
spectral norm inV is given by

N(t) =
(
‖ξ‖2 + ‖η‖2 + 2

√
‖ξ‖2 + ‖η‖2 − (ξ, η)2

)1/2

,

where t = (tj)1≤j≤p, tj = ξj + iηj, ξj, ηj ∈ R and ξ = (ξ1, ξ2, . . . , ξp) and η =
(η1, η2, . . . , ηp) (see[8, Chapter X, Exercise 2]). TheLie ball is the domain defined by

B = {z ∈ C
p|N(z) < 1}.

The conditions(27) and (28)amount to say thatW belongs toD if and only if (t1, t2, . . . , tp)
belongs toB. In fact observe that the condition(27)amounts to

‖ξ‖2 + ‖η‖2 < 1
2(1 + (‖ξ‖2 − ‖η‖2)2 + 4(ξ, η)2)

or

‖ξ‖2 + ‖η‖2 + 1
2(1 + (‖ξ‖2 − ‖η‖2)2 − 4‖ξ‖2‖η‖2 + 4(ξ, η)2),

which is equivalent to

4(‖ξ‖2‖η‖2 − (ξ, η)2) < (1 + (‖ξ‖2 + ‖η‖2)2.

As ‖ξ‖2 + ‖η‖2 < 1, this is equivalent to

‖ξ‖2 + ‖ξ‖2 + 2
√

‖ξ‖2 + ‖η‖2 − (ξ, η)2 < 1, (29)

which is the desired condition.
The Shilov boundarySB of the domainB is the set

SB = {σ ∈ C
p|σ = e−iθu, u ∈ R

p, ‖u‖ = 1, θ ∈ R/2πZ}
(see[8]). As eiθu = e−i(θ+π)(−u), SB � Sp−1 × S1/Z2.

To find the Shilov boundaryS of the domainD, letσ = ∑p

j=1 tjej ∈ SB, with tj = eiθuj,
uj ∈ R. Then:

p∑
j=1

t2j = e−2iθ
p∑
j=1

u2
j = e−2iθ = cosθ − i sinθ

cosθ + i sinθ
(30)

and hence a generator of the corresponding complex line inV is the element

(u, cosθ, sinθ) =
p∑
j=1

ujej + cosθep+1 + sinθep+2.

Theorem 6.1. The correspondence

e−iθu→ C(u+ sinθep+1 + cosθep+2)

is a diffeomorphism ofSB onto S.
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As a consequence, the Shilov boundaryΣ of D is the set of all realisotropic linesin V .
The determinant corresponding to the Jordan algebra structure onV is given by

A(z) = z21 + z22 + · · · + z2p.
Two points ofS, sayζ = e−iθu andη = e−iφv are transverse if and only if

ζ�ηdef⇔A(ζ − η) �= 0 ⇔ cos(θ − φ) �= (u, v).
As

S((u, cosθ, sinθ), (v, cosφ, sinφ)) = (u|v)− cos(θ − φ),
two isotropic linesW1 andW2 in V are transverse (this will be denoted byW1�W2) if and
only if they are distinct and the plane they generate is not totally isotropic. It implies that
the restriction ofS toW1 ⊕W2 is non-degenerate, and of signature(+,−).

The groupO(p,2) has four connected components. To describe its neutral component
G = O(p,2)0, first recall that forg ∈ O(p,2), (detg)2 = 1, so that detg = 1 for g ∈ G
by connectedness. Then letV = V 0+ ∈ V 0− be a fixed orthogonal decomposition such that
the form is positive-definite onV 0+ and negative-definite onV 0−. Letp− be the orthogonal
projection onV 0−. Then, for any subspaceV− of V such that the restriction of the form to
V− is negative-definite, the restriction ofp− to V− is injective. Now letg ∈ O(p,2). Then
g(V 0−) is such a subspace, hence the map

V 0
−
g→V−

p−→V 0
−

is a linear isomorphism. Denote byδ−(g) its determinant (which is not 0). Then

G = O(p,2)0 = SO0(p,2) = {g ∈ O(p,2),detg = 1, δ−(g) > 0}.

Lemma 6.2. Letw1 = e1 + ep+2, w2 = e1 − ep+2. Then

S(w1, w1) = S(w2, w2) = 0, S(w1, w2) = 2

and the stabilizer in G of the pair(w1, w2) is isomorphic toSO0(p− 1,1).

The first statement is obvious. For the second statement, letg ∈ G which stabilizes both
w1 andw2. It then stabilizes the planeΠ = Re1 ⊕ Rep+2, hence also its orthogonalΠ⊥,
which is the space generated bye2, e3, . . . , ep andep+1. The matrix ofg is of the form

1 0 · · · 0 0

0 0
... γ

...

0 0

0 0 · · · 0 1


,

whereγ is ap × p matrix. The restriction ofg to Π⊥ stabilizes the restriction ofS to
Π⊥, and henceg|Π⊥ ∈ O(Π⊥). Soγ ∈ O(p − 1,1). But Detg = Det(γ) = 1. From the
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orthogonal decompositionV = (Re1 ⊕ · · · ⊕ Rep)⊕ (Rep+1 ⊕ Rep+2), it is easily seen
thatδ−(g) > 0 ⇔ g2,2 = gp+1,p+1 > 0, which shows thatγ ∈ SO0(p− 1,1).

Lemma 6.3. G operates transitively on couples of vectorsw1, w2 such thatS(w1, w1) =
S(w2, w2) = 0, S(w1, w2) = 2.

Let (w1, w2) be any couple which satisfies the assumption. From Witt’s theorem, there
existsg ∈ O(p,2) such thatgw1 = e1 + ep+2, gw2 = e1 − ep+2.

The elementg is determined up to left multiplication by an element ofO(p,2) which
stabilizes bothw1 andw2. The stabilizer inO(p,2) is isomorphic toO(p − 1,1), hence
has four connected components. But the matrices

1 0 · · · 0 0

0 −1 · · · 0 0

0 0 Ip−2 0 0

0 0 · · · 1 0

0 0 · · · 0 1


,



1 0 · · · 0 0

0 1 · · · 0 0

0 0 Ip−2 0 0

0 0 · · · −1 0

0 0 · · · 0 1


,



1 0 · · · 0 0

0 −1 · · · 0 0

0 0 Ip−2 0 0

0 0 · · · −1 0

0 0 · · · 0 1


and the identity matrixIp+2 are in the stabilizer, and their corresponding restrictions give
representatives of the four connected components ofO(p−1,1). The lemma follows from
these observations.

Denote as before byS3
� the set of triples(W1,W2,W3) such thatWj�Wk for j �= k.

Theorem 6.4. There are exactly three orbits inS3
� under the action of the group G. Rep-

resentatives(viewed as a triple of isotropic lines in V) of the orbits are given by

• (R(e1 + ep+2),R(e1 − ep+2),R(e1 + ep+1));
• (R(e1 + ep+2),R(e1 − ep+2),R(e1 − ep+1));
• (R(e1 + ep+2),R(e1 − ep+2),R(e2 − ep+2)).

Proof. Let (W1,W2,W3) ∈ S3
�. As the restriction ofS to W1 ⊕ W2 is non-degenerate,

choosew1 ∈ W1, w2 ∈ W2 such that

S(w1, w1) = S(w2, w2) = 0, S(w1, w2) = 2.

These conditions determine the couple(w1, w2) up to a real numberλ �= 0, in the sense that
any other solution is of the formλω1, (1/λ)w2. For a specific choice ofw1, there exists a
uniquew3 ∈ W3 such thatS(w1, w3) = 1. ThenS(w2, w3) = µ �= 0. Changingw1 to λw1
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replacesw2 by (1/λ)w2 andw3 by (1/λ)w3, hence changesµ into (1/λ)2µ. It is always
possible to assume that

S(w1, w3) = 1, S(w2, w3) = ε
with ε = ±1. LetΠ = Rw1 ⊕ Rw2, andΠ⊥ its orthogonal, so thatV = Π ⊕ Π⊥.
According to this decomposition, writew3 = p3 + q3, with p3 ∈ Π andq3 ∈ Π⊥. Then
it is easily verified thatp3 = (1/2)(εw1 + w2). Note further that, asS(w3, w3) = 0,
S(q3, q3) = −S(p3, p3) = −ε.

Thanks toLemma 6.2, it suffices to consider the case wherew1 = e1 + ep+2, w2 =
e1 − ep+2, so thatp3 = e1 if ε = 1, andp3 = −ep+2 if ε = −1.

Recall that there are two orbits under SO0(p− 1,1) in the set

{x2e2 + · · · + xpep + xp+1ep+1|x2
2 + · · · + x2

p − x2
p+1 < 0}

with representative, respectively,+ep+1 and−ep+1, and one orbit in the set

{x2e2 + · · · + xpep + xp+1ep+1|x2
2 + · · · + x2

p − x2
p+1 > 0}

with representativee2. The case whereε = 1 gives rise to two orbits with representatives
q3 = ep+1 andq3 = −ep+1 (and hencew3 = e1+ep+1,w3 = e1−ep+1) and the case where
ε = −1 gives rise to one orbit, with representativeq3 = e2 (and hencew3 = e2 − ep+2).
The theorem follows from these results. �

7. Isotropic lines in V and pure Lagrangians in the spinor space

The Lorentzian Jordan algebraLp has non-trivial representations. The spaceE of such
a representation is a Clifford module for the Clifford algebra constructed on the Euclidean
spaceRp−1, and vice versa (see[3]). It is more involved that the previous cases. In order to
describe the embedding of the Shilov boundaryS (=the manifold of isotropic lines) of the
domainD (=the Lie ball) into the corresponding Lagrangian manifold ofE×E in geometric
terms, it is more convenient, in agreement with the geometric presentation of the spaceD in
Section 6to start with a real vector spaceV of dimensionp+ 2 equipped with a quadratic
form S of signature(p,2), to consider the associatedClifford algebraC = C(V, S) and the
associated space of spinorsΣ. It turns out thatΣ has a natural symplectic structure. For each
isotropic line inV a certain Lagrangian subspace ofΣ is constructed. This construction will
be interpreted inSection 8as an embedding of the Shilov boundaryS into the Lagrangian
manifold ofΣ, associated to a holomorphic embedding of the Lie ball in the Siegel disc
associated to the symplectic spaceΣ.

Recall that the Clifford algebra4 C = C(V, S) is the algebra generated overR by V with
the relationsxy+ yx = 2S(x, y). The spaceV itself will be regarded as a subspace inC.
Let ∧ be the conjugation ofC, i.e. the unique antiautomorphism ofC such that̂x = −x for
x ∈ V .

4 A general reference for Clifford algebras and spinors is[9]. See also[6].
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LetCev (resp.Codd) be the even (resp. odd) part ofC(V, S). The structure of the algebra
Cev is well known. It is either simple or direct sum of two simple ideals. In any case, a
simple ideal is isomorphic to a matrix algebra overK = R,C or H. The algebra ofN ×N
matrices with coefficients inK is denoted by Mat(N,K).

The description mod 8 ofCev is given by the following list:

• Casep ≡ 0 (8):Cev � Mat(N,C), N = 2p/2.
• Casep ≡ 1 (8):Cev � Mat(N,R), N = 2(p+1)/2.
• Casep ≡ 2 (8):Cev � Mat(N,R)⊕ Mat(N,R), N = 2p/2.
• Casep ≡ 3 (8):Cev � Mat(N,R), N = 2(p+1)/2.
• Casep ≡ 4 (8):Cev � Mat(N,C), N = 2p/2.
• Casep ≡ 5 (8):Cev � Mat(N,H), N = 2(p−1)/2.
• Casep ≡ 6 (8):Cev � Mat(N,H)⊕ Mat(N,H), N = 2(p−2)/2.
• Casep ≡ 7 (8):Cev � Mat(N,H), N = 2(p−1)/2.

(see[9] for a proof of these facts).
In any case, denote byΣ a simple module under the action ofCev. It is a (right)K-module

of dimensionN, called “the”space of spinors.

Proposition 7.1. There exists a(unique up to a non-zero real constant) K skew-Hermitian
non-degenerate product h onΣ such that

h(aξ, η) = h(ξ, âη)
for ξ, η ∈ Σ anda ∈ Cev. Moreover in the complex case(K = C), the form h is split.

For a proof, see[9].
A Lagrangian subspace is aK vector subspace ofΣ of half dimension (=N/2) which

is totally isotropic for the formh. The spin group Spin(V, S) acts onΣ by the spinor
representation, preserving the formh, and hence Spin(V, S)acts on the Lagrangian manifold
of Σ. A specific orbit of this action will be described now.

Denote byN the cone of isotropic vectors inV

N = {x ∈ V |S(v, v) = 0}
and byN ∗ the set of non-zero vectors ofN.

Lemma 7.2. Letx ∈ N ∗. Set

Jx = {a ∈ Cev|ax = 0}.
ThenJx = Coddx.

Fix an orthogonal decomposition ofV asV+ ⊕ V−, where the restriction ofS to V+
is positive-definite, whereas the restriction ofS to V− is negative-definite. Forx ∈ V , set
x = x+ + x−, with x+ ∈ V+ andx− ∈ V−. Hence, ifx ∈ N:

S(x+, x+) = −S(x−, x−), S(x+, x−) = 0.
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If moreoverx �= 0, thenx+, x− �= 0, and asJx does depend projectively onx, it is possible
to assume thatS(x+, x+) = −S(x−, x−) = 1. Introduce the following elements ofCev:

ax = 1
4(x+ − x−)(x+ + x−), bx = 1

4(x+ + x−)(x+ − x−). (31)

The following properties are easily verified:

a2
x = ax, b2

x = bx, axbx = bxax = 0, ax + bx = 1,

axx = 0, xax = x, xbx = 0, bxx = x.
Let J ′

x = Coddx. ClearlyJ ′
x ⊂ Jx. Now letc ∈ Jx. Then

c = c(ax + bx) = cax + cx(1
4(x+ − x−)) = cax = c(1

4(x+ − x−))x ∈ J ′
x.

HenceJx ⊂ J ′
x.

The proof also shows that

Jx = Coddx = Cevax.

Similarly let

Hx
def={a ∈ Cev|xa = 0} = xCodd = bxCev.

Lemma 7.3. Letx ∈ N ∗, and letξ ∈ Σ. Then

Jxξ = 0 ⇔ axξ = 0 ⇔ bxξ = ξ ⇔ ξ ∈ HxΣ,
Hxξ = 0 ⇔ bxξ = 0 ⇔ axξ = ξ ⇔ ξ ∈ JxΣ.

Proof. Let ξ be such thatJxξ = 0. Thenaxξ = 0, hencebxξ = ξ, so thatξ ∈ HxΣ.
Conversely, letξ ∈ HxΣ. This means that there existsη ∈ Σ, such thatξ = bxη, and hence
axξ = 0, so thatJxξ = 0. The proof of the second line is similar.

Forx ∈ N ∗, define

Σx = {ξ ∈ Σ|Jxξ = 0} = HxΣ, Σx = {ξ ∈ Σ|Hxξ = 0} = JxΣ. � (32)

Lemma 7.4. Letx ∈ N ∗. ThenΣx andΣx are transverse Lagrangian subspaces ofΣ.

Proof. As the action ofK commutes with the action of the Clifford algebra,Σx (resp.Σx)
is aK vector subspace. Letξ, η ∈ Σx. Then, aŝax = bx

h(ξ, η) = h(bxξ, η) = h(ξ, axη) = 0.

This shows thatΣx is totally isotropic. A similar argument shows thatΣx is also totally
isotropic. For anyξ ∈ Σ, write ξ = axξ+ bxξ. The first term belongs toΣx and the second
toΣx. HenceΣ = Σx +Σx, and as a totally isotropic subspace has a dimension less than
half the dimension of the space, the dimensions ofΣx andΣx are equal toN/2, and the
conclusion follows. Observe moreover thatΣx = Σx′ with x′ = x+ − x−.
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A Lagrangian subspaceΛ in Σ which is of the formΣx (or equivalentlyΣx) for some
x ∈ N ∗ is said to bepure. Denote byΛpurethe subset of pure Lagrangians in the Lagrangian
manifold ofσ. �

Theorem 7.5. The mapping

x �→ Σx

is a bijective map from the projectivized spaceN ∗/R∗ onΛpure, which is equivariant with
respect to the action of the spin group.

Proof. Let us first prove the equivariance. Denote byG = Spin(V, S) the spin group.Λpure

is invariant under the action ofG. Let g ∈ G. Let x ∈ N ∗, and letg · x = gxg−1.
Then

c ∈ Jg·x ⇔ cgxg−1 = 0 ⇔ cgx= 0 ⇔ cg ∈ Jx.
HenceJg·x = Jxg−1. Now

ξ ∈ Σg·x ⇔ Jg·xξ = 0 ⇔ Jxg
−1ξ = 0 ⇔ g−1ξ ∈ Σx.

HenceΣgx = gΣx, which gives the equivariance property. The map is surjective by defini-
tion. The stabilizerPx of the isotropic lineRx is known to be amaximal parabolic subgroup
ofG, hence the stabilizer ofΣx is eitherG orPx. As the spinor representation is irreducible,
it cannot beG. Hence it is equal toPx. So ifΣx = Σy, thenPx = Py, and henceRx = Ry.
This finishes the proof. �

The last result of this section sheds a new light on the notion of transverse isotropic lines
introduced inSection 6.

Proposition 7.6. Letx, y ∈ N ∗. Then

x�y⇔ Σx ∩Σy = {0}.

Proof. Let x, y ∈ N ∗ verifying x�y. The restriction ofS to the planeRx ⊕ Ry is of
signature(+,−). Fix an orthogonal basis{f+, f−} such thatS(f+, f+) = 1,S(f−, f−) =
−1. Let x = λf+ + µf−. Then, asx is isotropic,λ2 = µ2. By scaling ofx and possibly
changingf− to −f−, one can assume w.l.o.g. thatλ = µ = 1, hencex = f+ + f−.
By a similar argument applied toy, one can assume thaty = f+ − f−. The arguments
used during the proof ofLemmas 7.2 and 7.3imply thatΣy = Σx and henceΣx ∩Σy =
{0}. Now suppose that on the contrary,x and y are not transverse. ThenS(x, y) = 0,
hence

0 �= xy = −yx ∈ Jx ∩ Jy
and soΣx ∩Σy �= {0}. �
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8. The case of type IV: the spinor approach

The embedding of the space of istropic lines ofV into the space of pure Lagrangians as
realized inSection 7is associated to a representation of the Lorentzian Jordan algebraLp,
and this will lead to a formula à la Kashiwara for the Maslov index of three isotropic lines
in V (not necessarily tranverse).

In turn, such a representation is equivalent to a homomorphism:

ρ : g = o(V, S)→ sp(Σ),

which satisfiesSatake’s condition(H2) (see[14, p. 84]). It turns out to be easier to start
from such an embedding and then deduce the correspondence between the Shilov boundary
S and the Lagrangian manifold. The first step is to interpreto(V, S) as a Lie subalgebra of
the Clifford algebraC(V, S).

In fact, the Lie algebrag = o(V, S) has a realization inCev as

g = {x ∈ Cev|x̂+ x = 0, [x, V ] ⊂ V },
the Lie bracket being just the commutator in the Clifford algebra.

Fix anS-orthogonal basis{ej}1≤j≤p+2 of V , such that

S(ej, ej) = +1 for 1 ≤ j ≤ p, S(ej, ej) = −1 for j = p+ 1, p+ 2.

A concrete realization ofg is

g =
⊕

1≤i<j≤p+2

Reiej.

Let e− = ep+1ep+2. Observe thate−1
− = −e− = ê−, and consider the inner automorphism

of the Clifford algebra given by

α : a �→ e−1
− ae−.

The automorphismα commutes with∧ and preservesCev. It stabilizesV , and induces+id
on the space generated by theej, 1 ≤ j ≤ p, and−id on the space generated byep+1,
ep+2. The subspaceg is stable by the involutionα and it induces a Cartan involution ofg,
hence a splittingg = t ⊕ p (see[14, Appendix]). The spacep is given by

p =
 p⊕
j=1

Rejep+1

⊕
 p⊕
j=1

Rejep+2

 .
The elementH + 0 = (1/2)e− is in the center oft and satisfies

[H0, ejep+1] = ejep+2, [H0, ejep+2] = −ejep+1,

hence induces a complex structure onp. The eigenspace of adH0 for the eigenvalue+i is
denoted byp+ and

p+ =
 p⊕
j=1

Cej

(ep+1 − iep+2

2

)
� C

p.
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Let σ be the conjugation with respect to the compact real formt ⊕ ip. The involutionσ
mapsp+ into p−. Forv ∈ ⊕pj=1Cej:

e(v(1
2(ep+1 − iep+2))) = (−v̄)(1

2(ep+1 + iep+2)).

Now let

e = e1(1
2(ep+1 − iep+2)).

This is an element ofp+, and it satisfies

[e, σ(e)] = iep+1ep+2 = 2iH0.

Moreover, letv = z1e1 + z2e2 + · · · + zpep. Then a straightforward computation shows
that

−1
2{e, v(1

2(ep+1 − iep+2)), e} = v′(1
2(ep+1 − iep+2)),

wherev′ = z̄1e1 − z̄2e2 − · · · − z̄pep. The corresponding real form (cf.Section 3) is

J = {v(1
2(ep+1 − iep+2))|v = x1e1 + i(x2e2 + · · · + xpep), x1, x2, . . . , xp ∈ R}

isomorphic toRp, and the Jordan algebra structure coincides with the one presented in
Section 6.

Recall formSection 7thatΣ is a spinor space forCev. If a ∈ g ⊂ Cev, thenâ = −a, and
hence

h(aξ, η)+ h(ξ, aη) = 0

for all ξ, η ∈ Σ. The formA = Reh is a symplectic form onΣ. By restriction of the action
of Cev onΣ, one obtains a homomorphismρ of Lie algebras:

ρ : o(V, S)→ sp(Σ,A).

Our next goal is to show that this homomorphism satisfies Satake’s condition (H2) condition,
namely:

ρ(H0) = 1
2J,

whereJ ∈ sp(Σ) is a complex structure onΣ such thatA(ξ, Jη) is a positive-definite form
onΣ.

The Clifford algebraC is isomorphic (as vector space) to theexterior algebraΛ(V).
There is a canonical non-degenerate symmetricR-bilinear form onΛ(V), denoted by〈, 〉.
It satisfies

〈ab, c〉 = 〈a, cb̂〉 = 〈b, âc〉 (33)

for all a, b, c in C. In particular

〈a, b〉 = 〈1, âb〉 = 〈1, bâ〉. (34)
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The subspacesCev andCodd are orthogonal for〈, 〉, and hence the restriction of〈, 〉 defines
a non-degenerate symmetric bilinear form onCev. Similarly, in the non-simple caseCev+
andCev− are orthogonal. In fact, let aa ∈ Cev+ andb ∈ Cev− . Then

〈a, b〉 = 〈λa, b〉 = 〈a, λ̂b〉 = 〈a, λb〉 = −〈a, b〉
so that〈a, b〉 = 0 for all a ∈ Cev+ andb ∈ a ∈ Cev− . So the restriction of the form〈, 〉 toCev±
is non-degenerate.

Proposition 8.1.

(i) AssumeCev is simple. For alla, b ∈ Cev:

〈a, b〉 = 1

N
TrR ρ(ab̂), (35)

whereN = dimΣ.
(ii) Assumep ≡ 2,6 mod 8.For all a, b ∈ Cev± :

〈a, b〉 = 2

N
TrR ρ±(ab̂), (35′)

whereN = dimΣ±.

Proof. The notation for statement (ii) will be explicited during the proof. AssumeCev is
simple. Thanks to(34), it suffices to show that

〈1, a〉 = 1

N
Tr ρ(a)

for anya ∈ Cev. Let Ψ(a) = (1/N)Tr ρ(a). This defines a linear formΨ onCev, which
satisfiesΨ(ab) = Ψ(ba). As 〈, 〉 is non-degenerate onCev, there existsc ∈ Cev such that
Ψ(a) = 〈a, c〉 for all a ∈ Cev. Now

〈ab, c〉 = 〈ba, c〉 ⇒ 〈a, cb̂〉 = 〈a, b̂c〉
for anya, b, and hencecb̂ = b̂c for anyb ∈ Cev, so thatcmust belong to the center ofCev.

In the odd case, the center ofCev is reduced toR1, soc is a multiple of 1, and one checks
that the normalizing constant 1/N is the proper one.

For the even case we need more notation. Letλ = e1e2 · · · ep+1ep+2 (volume element).
Observe thatλ up to a sign does not depend on the specific choice of the(ej)1≤j≤p+2. The
center ofCev is R ⊕ Rλ, so thatc = α+ βλ, with α, β ∈ R. By settinga = 1:

Φ(1) = 1

N
Tr ρ(1) = 1 = α〈1,1〉 + β〈1, λ〉 = α+ 0.

Henceα = 1. Seta = λ to get

Φ(λ) = 1

N
Tr ρ(λ) = β〈λ, λ〉.

As 〈λ, λ〉 = ±1, it suffices to show that Trρ(λ) = 0 to be able to conclude thatβ = 0.
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If p ≡ 0,4 mod 8,λ2 = −1 andρ(λ) is a complex structure onΣ. Hence Trρ(λ) = 0.
It remains to study the case wherep ≡ 2,6 mod 8. It corresponds to the proof of (ii). In

this case,̂λ = λ andλ2 = 1. Accordingly, the algebraCev splits asCev+ ⊕Cev− . NowCev+ �
Mat(N,K) and letρ± : Cev+ → EndK(Σ±) be corresponding half-spin representations.
Extendρ± to Cev by taking it equal to 0 onCev∓. Arguing as before, it is enough to
compute TrR ρ+(λ). Now write

λ = 1
2(1 + λ)+ 1

2(−1 + λ)
and observe that 1+ λ/2 is the unit element inCev+ . Hence

TrR ρ+(λ) = Tr ρ+(1
2(1 + λ)) = dimΣ+ = N.

Hence, fora ∈ Cev+ :

1

N
Tr ρ+(a) = 〈a,1〉 + 〈a, λ〉 = 2〈a,1〉.

As above, this implies(35’). The proof forρ− is similar.
Let e− = ep+1ep+2. Observe thate−1

− = −e− = ê−, and consider the automorphism

α : a �→ e−1
− ae−.

The automorphismα commutes with∧ and preservesCev. Moreover the quadratic form

a �→ 〈α(a), a〉
is positive-definite onCev (see[14]).

Let J = ρ(e−). Then

J2 = −1, h(Jξ, η) = −h(ξ, Jη)
for all ξ, η ∈ Σ. As a consequence,(ξ, η) = h(Jξ, η) is aK-Hermitian non-degenerate form
onΣ. �

Proposition 8.2. The form(, ) defined onΣ by

(ξ, η) := h(Jξ, η)
is positive-definite or negative-definite.

Proof. The proof will be given in the case whereCev is simple, but the proof for the
non-simple case is almost identical. LetT in EndK(Σ), and denote bŷT its adjoint with
respect toh, and byT ∗ its adjoint with respect to(, ). Then

T ∗ = −JT̂ J.
Henceρ(α(a))∧ = −Jρ̂(a)J = ρ(a)∗ for any a ∈ Cev, and hence TrR(ρ(a)∗ρ(a)) is
positive-definite onCev. It implies that TrR(T ∗T) is a positive-definite form on EndK(Σ).
Now let ξ ∈ Σ. Let Tξ be the operator onΣ defined by

Tξ(η) = ξ(ξ, η).
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ThenT ∗
ξ = Tξ, and TrR(T ∗

ξ Tξ) = dimK(ξ, ξ)2. If ξ �= 0, then(ξ, ξ)2 can never be 0. The
real quadratic form(ξ, ξ) has no non-trivial isotropic vector, hence is either positive-definite
or negative-definite.

By changingh to −h if necessary, the form(·, ·) can be assumed to be positive-definite.
Hence the homomorphismρ : o(V, S) → sp(Σ) satisfies the (H2) condition. So the map
ρ maps the Shilov boundary ofD (the Lie ball) into the corresponding Shilov boundary of
the Siegel disc associated toΣ.

In the present realization ofp+, the Shilov boundary ofD is (cf. Section 6)

S = {eiθµ(1
2(ep+1 − iep+2))},

whereu ∈ V+, ‖u‖ = 1, θ ∈ R/2πZ, and(−u, θ + π) corresponds to the same point as
(u, θ).

LetΣC be the complexification ofΣ, and letV0− = {ξ ∈ ΣC|Jξ = −iξ}. Let Rx be an
isotropic vector inV . As before, normalizex so that

x = u+ cosθep+1 + sinθep+2

with u ∈ ⊕pj=1Rej, ‖u‖ = 1. In the present realization of the Shilov boundary, this

corresponds to the point eiθu(ep+1 − iep+2). Now associate to this the pointρ(eiθu(ep+1 −
iep+2)) and take the corresponding Lagrangian space ofΣ:

W = Wx = {ξ + eiθu(ep+1 − iep+2)ξ|ξ ∈ V
0
−} ∩Σ. � (36)

Theorem 8.3. The spaceWx defined by(36) is a pure Lagrangian space.

Proof. The space{ξ + eiθu(ep+1 − iep+2)ξ|ξ ∈ V0−} is (by construction or by direct
checking) a complex Lagrangian space inΣC, which is stable by the conjugation with
respect toΣ. Hence

Wx = {Re(ξ + eiθu(ep+1 − iep+1))ξ|ξ ∈ V
0
−}.

An element ofV0− is of the formξ = (1+ iep+1ep+2)η with η a real spinor(η ∈ Σ). Now

(1
2(ep+1 − iep+2))(1 + ep+1ep+2)η = (ep+1 − iep+2)η

so that

Re(ξ + eiθu(ep+1 − iep+2)ξ) = (1 + u( cosθep+1 + sinθep+2))η

and hence, by comparison with(31) and (32)

Wx = (1 + u( cosθep+1 + sinθep+2))Σ = axΣ = Σx

showing thatWx is a pure Lagrangian space. �

Theorem 8.4. The extended Maslov index for a triple of isotropic lines(Rx1,Rx2,Rx3) is
given by

ι(Rx1,Rx2,Rx3) = 2

N dim(K)
ιΣ(Wx1,Wx2,Wx3),
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whereιΣ is the(classical) Maslov index for triples of Lagrangians in the symplectic space
(Σ,Reh).

This is formula(14) applied to our case (the rank ofLp is 2). Needless to say, the
LagrangiansWxi are (right)K-subspaces, and so this formula can also be written as

ι(Rx1,Rx2,Rx3) = 2

N
ι̃Σ(Wx1,Wx2,Wx3),

where nowι̃ means the Maslov index for Lagrangians of theK vector space(Σ, h)) (as
defined inSections 4 and 5).
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